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INTRODUCTION

This Final Technical Report constitutes a summary of the
research performed under Grant N00014-90-J-1712 during the
period of April 1, 1990 through September 30, 1992. First we
present a list of the personnel involved in the research effort. Then
in the following section we present a brief summary of the research
results that have been achieved. Each of these results is well
documented in technical articles, and references to these articles
are made in the summary of the research results. We hope you find
these interesting.
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A SURVEY OF RESULTS

In this final technical report we will briefly comment upon our
research accomplishments sponsored by Grant N00014-90-J-1712.
Much of our work during this period was concerned with various
aspects of random fields. The principal subareas of research
activity may be characterized by the following:

Research in distributed estimation which might readily arise in a
typical estimation problem in the context of random fields,

Optimal estimation with respect to a large family of cost
functions,

Decentralized estimation with nontraditional fidelity criteria,
Multidimensional quantization which could arise in the effort to

quantize a random field,
Multidimensional convolution,
The concept of finite memory of a stochastic process or a random

field,
Distribution of the determinant of a random matrix,
Stationary random processes,
Zero-crossing rates for Gaussian processes,
Martingale characteristics of a Weiner process,
Estimation of a random variable based on multidimensional data,
Detection Theory versus Hypothesis Testing,
Importance Sampling
, and
Mutual Independence



A. Distributed Estimation

The results achieved in the area of distributed estimation are
found in Appendix A in the paper entitled, "Some Aspects of Fusion in
Estimation Theory," which appeared in the the March 1991 issue of
IEEE Transactions on Information Theory. In this paper we
considered the problem of fusion in estimation theory. We presented
several examples, using common distributions, in which virtually
any method of fusion would be useless in approximating the random
variable of interest. Further, we presented a theorem which for a
very general situation shows that fusion resulting in an almost
surely exact approximation is always possible. In particular, this
result addressed the situation in which the data consisted of the
random variable of interest corrupted by additive Gaussian noise and
the random variable of interest could be any second order random
variable. An example was presented which illustrates the utility of
this result.
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Some Aspects of Fusion in Estimation Theory
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Some Aspects of Fusion in Estimation Theory place the problem of fusion in estimation thcor> in a rigorowu
setting and addicss and answer several crucial qus-ion,, For a

Eric B. Hall, Alan E. Wessel. and Gary L. Wise treatment of fusion via linear combinations of bcst linear esi-
mates, of fusion via linear combinations of best Borcl menasur-
able estimates, and for other comments on lhis general prtobLm.

Abstract -The problenr of fusing or combining various estimates to we refer the reader to [6R.
obtain a single good estimate is investigated. Several examples are
presented in which virtually any method of fusion faits. Finally, a very
general situation is considered and an example is presented in which 11. SoMI Diitt( L .[li l S AM)( RI0-,II i S
almost surely exact fusion is always possible.

idex Terms -Fusion, distributed estimation, conditional expectation. We will now consider the general problem of tumion in which
a Borel measurable transformation of best 1. Borcl measurable
estimates is sought. In particular. if AX is a second-order random

I. INTRODUCTION variable, if n is a positis.e integer, and if Yt. V.-. K • arc n
random variables, how may E[ A' Y1 . E[XF .]. . a, nd E]' },]

In this correspondence we consider the problem of fusion in be fused to approximate E[ X:Y1 , V%.. -.. 1,, in other words.
estimation theory. Our primary concern is directed toward find- under what conditions is E( XIE[!XV 1. El :N . -] ,.-. Ef[X,])
ing a method of fusing or combining a finite number of csti- (the best L, estimate of X based on a Borel measurable
mates of a fixed second order random variable X in order to function of E[X:Y1 ]. E[X.Y2],. . and E[X1Y]•) a good ap-
achieve a single "'best" estimate of X. Our concern throughout proximation of E[X!Y1 .Y,.- -. j,]? As the fofl'%ýing cxamplc,
this paper is directed toward minimizing the mean-square error indicate, there are numerous subtleties that arise in this context.
(mse). In this context, for an arbitrary probability space For example, as will be seen, even if
(fl,Y,-P), we recall [1] that it is necessary to take versions of
conditional expectations which are Borel measurable functions
of the conditioned random variables, and we do so throughout E[ X1Y, E[XiY] E [XY a
the correspondence.

As an example of fusion in estimation, if Y, and Y: ar- El XIY,),,, - Y,,) could be wildly different from E4 Y YJ].
random variables, how might E[X Y1I and E[XIY2] be fused to Example 1: Let Q = [0. 1], .,' denote the Borel subsets of Q.
obtain a good approximation to E[XIYI,r,]. Notice that the and P denote Lebesgue measure on .'7. Let A be a positive real

statistical knowledge required to calculate E[X T ]and EIXIY2I number. o-lY 1 ) = a(10. 1/2)), o'(Y,) = /([1,14. 3/4)). and
isless thanthat required tocalculate E[XIY,.Y],]since E[XIY1"] X(o)= A for wE[0,1/4)U[l/2.3/4) and X(w)= - A for
and E[XIY2 I can be obtained from the appropriate bivariate w=E[1/4,1/2)4[3/4,1]. Then it straightformardl% follows that
distributions, whereas E[XIY,,Y,] in general cannot. Also. Y, El[XIY1 ]= ElX Yz=0 a.s., but E[X YI.Y]= . a.s. Notice
and Y, might not be simultaneously available to the person that in this special case. any linear combination of E[X Y,] and
desiring E[XIY,.Y1 ], a situation occurring in the usual context E[XI 2 ] yields an estimate equal to 0 a.s.. resulting in a mse in
of distributed estimation in which a central location desires to approximating X of A 2 . which can exceed any preassigned
construct a good estimate based on the estimates obtained by a real number. Recalling that E[XIYj] and EJA' Y1]. respec-
set of spatially distinct field observers. Although other authors lively, are r(Y, )-measurable and l(Y,)-mcasurabl-. wc swe that
have attempted to address the problem of fusion in estimation EIXIY1]= E[XIY]=(0 pointwise in w; similarly, whe see that
theory (see for example [21-[51). many important questions in E[XIY1 , K,= X pointwise in &j. Thus. in this situation, it is
this area have not been resolved. In this correspondence we fruitless to attempt to approximate X based on ati, function of

Manuscript received October 2. 1989; revised August 29, 1990. This E[XIY11 and ElXIYj.

work was supported in part by the Office of Naval Research under Note that in Example 1. Y, and Y, are independent. A' and
Grant NXX104-90-J-1712 and in part by the Air Force Office of Scientific Y, are independent, and X and Y, are independent. This might
Research under Grant AFOSR-86-0)26. This work was presented in have led an unwary investigator to perhaps assert that
part at the 26th Annual Allerton Conference on Communication. Con- EIXIY1,Y,]= E[X] a,s., or perhaps that E[X 1Y,, Y] = Ef.Vil]
trol. and Computing, Monticello. IL, September 28-30. 1988. a.s. for i = I or 2. Each of these assertions, which happen to be

E. B. Hall is with the Department of Electrical Engineering, Southern equivalent in the seting of Example I, is incorrect.
Methodist University, Dallas, TX 75275. Note. also, that Example I concerned simple random vari.

A. E. Wessel is with the Department of Mathematics. Santa Clara ables. The phenomenon exhibited in Example 1. however. can
University, Santa Clara, CA 95053. hold for nonsimple random variables as shown in the following

G, L. Wise is with the Department of Statistics, University of Califor- h r examples wo com n isitions
nia-Berkeley. and is also with the Department of Electrical and Com- three examples which involve more commonplace distributon,,
puter Engineering and the Department of Mathematics, University of of random variables.
Texas at Austin. Austin, TX 78712. Example 2: Let Y, and Y, be independent Gaussian random

IEEE Log Number 9040910. variables defined on the same probability space, cach •aýing
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zero-mean and unit variance. Let X = YY,. Then ElA Y,"] the independence assumption. %4c hawc that
E[XIY2]= 0 a.s. whereas E{JXY 1,Y,]= X a.s.

Erample 3: Let Y, and Y, be independent random %ariablcs . _ d
defined on the same probability space, such that Y, is unitbrml, __-•_," _

distributed on [ - 1. 1 and Y, has a probability density function " j
given by f(x)= x2/v'f-T exp(-x2/2), and let X = Y1 Y,. It can JRfl1, I
be shown that X has a Gaussian distribution with zero-mean
and unit variance (cf. [7, pp. 172, 176]). Then again E[ A':Y,]I Now. in addition to these assumptions, assumnc that Ito each
E[XIY,]= 0 a.s., whereas E[ XIY.Y, Y21]= X a.s. positise integer i 5 n, N, has i zcro-mean Gaussian ditrihution

Example 4: For an integer n > 1, consider a set of random with a positise \ariance denoted b\ ior<. Noticv. thii in 'hi. ca-c.
variables MX, Y," ". J,} with a joint probability density function choosing continuous versions of the den.it, lunctions. \hc hms:
given, as in [8]. by

f(vY 7, exp - x: + "-)I p .. A _

.[+xexP(..aj( -)1

It follows straightforwardly that the set ({X,Y,,- , Y,} is not where we define
mutually Gaussian and not mutually independent, yet any proper
subset cf {X. Y,, Y.) containing at least two random variables Y"
is mutually independent, mitually Gaussian, and identically S --- = . A =
distributed with each random variable having zero-mean and - i , ,""
unit variance. For any nonempty proper subset fl of (Y., " ". -K}. and
we note that E[X11- I= 0 a.s. since X is independent of ,2.

However, it follows quickly that K [lY
K exp -- -

E[ XIY,,'" -,r,,

Stl-rtittion into the previous expression for Ef. NY. YJ
1x [-( 1  + a now implies that

f Ax exp f -: ((
Thus, since any Borel measurable function of the estimates E[X!Y,...,Y , A S a.s. (1
E[XI-2] where 2/ ranges over all nonempty proper subsets of exp - - d
(Y,,---,Y,,) would be constant almost surely, it would not be N 2 A
reasonable to attempt to estimate E[XiY1 .", Y,] based on a
combination of these estimates. For the special case where X has a density given b)

Notice that in Example 2 the observations are Gaussian, and /1 2,;2exp(- x2/2or2), we see that El XY.'. Y ; J=
in Example 3 the signal of interest is Gaussian. Further, in So 21/(l + A--2)a.s. Furthermore, E[X Y,]= }rj( 7 1, as'
Example 4 the signal of interest is Gaussian, the obser.'ations Thus. we see that in this situation.
are mutually Gaussian, and the problem under consideration isexpanded to include fusion of estimates of the form E[ X1.21] E[ X1Y," . ,. ] F1 X1 I a " o,where 2 is any nonempty proper subset of the observations. In Y ( ,

each case, estimation of X via fusion is hopeless and even the
ubiquitous Gaussian assumption does not alleviate this diffi- In other words, E[XrY, Y;,] is equal as. to a Borel mcasur-
culty. However, as will be shown next, with an appropriate able function of the E[XiYJ's for this ease "hen X is Gausian.
restriction on the observations, almost surely exact fusion is One might ask if such a result holds for anN other distributions
possible. on X. The following theorem addresses this question and sho,.s

that, in the context of the previous assumptions, almost surely
exact fusion is always possible for any second-order random

III. Fusio,,, IN A PRA('ICAL SErrING variable X.
Let (ii,_., P) be a fixed probability space on which all of the Theorem 1: Consider a probability space (11. i;. P) and ran-

following random variables will be defined, and let n be a dom variables XNI, N -'-. N, defined on (11, .5ý. P) %here n is a
positive integer. We will now consider an approach motivated by positive integer and X is a second-order random %ariable
more practical concerns. The following notation will be used Further. assume that for each positive integer i ! Pi, ', has
throughout the remainder of this section. Let Y, =- X + N,, where a zero-mean Gaussian distribution with positive variance giv, en
X, N, N2 , - ", N, are mutually independent, N, represents addi- by (r, and that X.N,.-. N,, are mutualy independent.
tive noise, and X is a second-order random variable represent- by Y, a X .N 1,- . Tae tuere ependent.
ing the signal of interest. As before, we consider the problem o Define Y, = X + N, for i = L- n. Then there exists a Borcl

estimating X via some combination of the E[XIY,]'s. measurable function R: R" - R such that E[AV ),J
Assume that N1.N,- -. ,Ný each possesses a probability den- g(E[X1Y,]"' , EIX',YJ) a.s.

sity function. Let F, denote the distribution function of X, and Proof If A' is a.s. equal to a constant, the rcult is obiotus.
& ' denote a Borel measurable density function of N,. Further. Assume that X is not almost suiclt!, equal to a constant t:sing
notice that via a straightforward change of variable and using (1) it immediately follows that a version of the rcgression tune-
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tion E[XIY, = y] is given by an example was presented that illustrates the utility ol this
-x+'X result.

f xexp + , + dFl (x)

-- 'X A( KN(>, Ii tj) oMi ,
"" dF,(x) The authors wish to acknowldge helpful comments on thefR 2subject of this correspo~ndence from Prof. Bruce Hajlck di the

This version will be used throughout the remainder of the proof. University of Illinois at Urbana-Champaign.
It no\, follows that

-- 2 + ..x X1 .X -t 2 2

d R0Z dFp[(X) fx -xp dF (a)- exp _ f.2-E[IXIY, =yI l-x ~ 27 ~~2'
d%, 2 -x 2x)

f [•R 2a,2 dF[ (xr" f•(

Notice that the denominator of this expression is positive. Ftir-
ther, the Schwarz inequality, which is a strict inequality since X
is not a.s. equal to a zonstant. implies that the numerator is also
positive. Thus, since d/dyE[XIY,= y]> 0, we see that
E[XI) = Y] is a strictly increasing function of y. Hence, there
exists a Borel measurable function g, so that g,(E[XIY,])= Y,
a.s. Notice that

= -- g, ( E[ X1Y,]J) a.s.

Thus, substitution of this expression for S into (1) provides a
Borel measurable function g: R" -, R such that
E[ XTI," " -,-Y,,= g ( E[ X w, 1, E[ KW~z,- .E[ XýY,,) a.s.

Hence, Theorem I shows that almost surely exact fuF'on in
the setting under consideration is always possible. Notice again
that this result holds for any second-order random variable of
interest. We next present an example which serves to illustrate
the utility of Theorem 1.

Example 5: In the context of Theorem 1, let X= I with
probability one half and let X = - 1 with probability one half.
Then it straightforwardly follows that a version of E[XIY, = y]
is given by tanh(y/o',2 ). Now, fixing this version and adopt-
ing the notation used earlier in this section, we have that RR. (-Ls
S = E%.t tanh- (E[XIY,]) a.s. Further, (1) simplifies to
E[XIY1 , .-.,Y]= tanh(S) a.s. Hence, we see that [Ill G. L. Wise. "A note on a common misconception in estimation.'

Syst. Conir. Lert.. vol. 5, pp. 355-356. Apr. 1985.
E[ XIY•,'" ,YJ = tanh tanh- EIXIY' a.s. [21 A. T. Alouani and J. D. Birdwell. "Distributed estimation Con-

strainis on the choice of the local models," IEEE Trans Autoimatc".1 I Contr,, vol. AC-33. pp, 503-506. May 1988.

Thus, in this case we have, as guaranteed by Theorem 1, a [3] D. A. Castanon and K. Tenekelzis. "Distributed estimation algo-
precise expression where E[XIY,,'"',Y,] is equal a.s. to a rithms for nonlinear systems." IEEE Trans. Automatic Contr.. vol
specific Borel measurable transformation of the E[X(YJ's. AC-20, pp. 418-425. May 1985.

[41 J. L. Speyer, "Computation and transmission requirement, for a
decentralized linear-quadratic-Gaussian control problem," IEEIIV. CONCLUSION Trans. Automatic Contr., vol. AC-24, pp. 266-269. Apr. 1979.

We considered the problem of fusion in estimation theory. [51 A. S Willsky, M. 6. Bello. D. A. Castanon. B. C. Levý. and G C
We presnted several examples, using common distribautions, in Verghese. "Combining and updating of local estimat-' Andi g:z,'

maps along sets of one-dimensional tracks," IEEE Tram. Auoratauwhich virtally any method of fusion would be useless in approx- Contr., vol. AC-27. pp. 799-813, Aug. 1982.
imating the random variable of interest. Further, we presented a [61 E. B. Hall, A. E. Wessel, and G. L. Wise. "On fusion in estimation
theorem which, for a very general situation, shows that fusion theory," in Proc. Twenr--Soth Ann. Allertion Conf. Cornmun , (Conr,
resulting in an almost surely exact approximation is always Comput., Monticello. IL. Sept. 28-30. 1988, pp 5W9-4)08
possible. In particular, this result addressed the situation in [71 L. Devroye, Non-Uniform Random Variate Generation. Ne%, Yotký
which the data consisted of the random variable of interest Springer-Verlag. 1986,
corrupted by additive Gaussian noise and the random variable [81 D. A. Pierce and R_ L. Dvkstra, "Independence and the normal
of interest could be any second-order random variable. Finally, distribution," The American Stanstician. vol. 23. Vý 39. Oct 9%t)



B. Optimal Estimation with Respect to a Large Family of Cost
Functions

Our results pertaining to optimal estimation are found in
Appendix B in the article entitled, "On optimal estimation with
respect to a large family of cost functions," which appeared in the
May 1991 issue of IEEE Transactions on Information Theory. In this
article we considered the problem of optimal estimation of a random
variable X based on an observation denoted by a random vector Y. We
gave a mild restriction on the regular conditional distribution
function of X given a(Y) that ensures that E[D(X-g(Y))] is minimized
for any cost function (D that is nonnegative, even, and convex. We
showed that given any real valued Borel measurable function there
exist random variables X and Y, possessing a joint density function,
so that the chosen function is an optimal estimator, with respect to
any of the cost functions previously described, of the random
variable X based on the random variable Y. The results were then
extended to estimation of X based upon a random variable that is
measurable with respect to any given a-subalgebra.



On Optimal Estimation with Respect to a Large II. DEVEWrPMEN"I
Family of Cost Functions In 1958, Seymour Sherman published a paper entitled "Non-

Eric B. Hall and Gary L. Wise Mean-Square Error Criteria" [1] in which he proposed condi-
tions on a conditional distribution that would allow for the
simultaneous minimization of a large family of cost functions. In

Abstract-Consider two random variables X and Y. A commonly [2] we provided a proof of Sherman's proposal and explored
encountered problem involves estimating X via h(Y) so as to minimize several extensions and practical consequences Although Sher-
E[ V X - h(Y))] where h is Borel measurable and 4P is a Borel measur- man's result had been widely quoted prior to [2], a correct proof
able cost function chosen to adequately reflect the fidelity demands of seems to have been elusive. For example, several proofs (3, pp.
the problem under consideration. This correspondence places a mild
condition on the regular conditional distribution of X given o(Y) that 308-?10]; [4, pp. 10-121] [5 p. 61] using integration by parts
ensures that E[c,(X - h(Y))] is minimized for any cost function b that were attempted even though the conditions placed on the cost
is nonnegative, even, and convex. In addition, it is shown that given any function were insufficient to allow such a method to be used. (In
Sorel measurable function g- R -- R, there exist random variables X particular, the proofs referenced above may fail for X and Y
and Y possessing a joint density function such that ElXIy= .- ] g(.) mutually Gaussian if a cost function 4): R -,[0,a) is chosenn.e., with respect to Lebesgue measure. which is even, strictly increasing on [0,=), and singular. For an

Inder Terms-Optimal nonlinear estimation, non-mean-square-error explicit counterexample the interested reader is referred to [6].)
fidelity criteria, regression functions. For a topological space T, we will let R(T) denote the Borel

subsets oi T; and Is(-) will denote the indicator function of the
I. INTRODUCtION set S. Let N denote the set of positive integers. Also, recall that

a probability distribution function F: R -. [0, 1] is said to be
In this correspondence we consider the problem of estimation unimodal about y v R if F is convex on (-=,-y) and concave on

with respect to nontraditional cost functions. In an estimation (,w), and a probability distribution on (nctionF: Ra-nd 0, c a is
problem one is often confronted with two concerns in choosing a said tobe symmetric if for all realx,F(x) = 1 - limr, , FP - x - h).
cost function: the concern that the cost function adequately If k is a positive integer and Y, ,-. , Yk are k random variables
reflects the cost one wishes to associate with an error, and the defined on a common probability space, the random vector
concern that the cost function results in a problem which one y=[y...,y. ]T induces a probability measure on J(RA) we
finds to be mathematically tractable. Traditional cost functions, will denote this resulting measure, conventionally known as the
such as the quadratic cost function that is associated with the distribution of Y, by the notation $L,. Finally, we recall that for
extremely popular mean-square-error criterion, are usually cho- a random variable X and a or-subalgebra V", a regular condi-
sen solely on the basis of the second of these two concerns. As a tional distribution function F: R x fl - 10,11 always exists [7,
result, the fidelity demands of the specific problem under con- pp. 263-264]; such a function is characterized by the following
sideration are rarely relied upon, and, in fact, are often not even two conditions: for each to e fl, F(.,w) is a probability distribu-
considered, when determining the cost function which will be tion function, and, for each x 6 R, F(x,w) -P(X < x1Y'Xw)
used. This sacrifice of suitability for mathematical ease in the a.s.
choice of a cost function should be the cause of some concern Sherman's original proposal (generalized and proved in [2])
since the traditional choices are unsuitable for many problems required a regular conditional distribution function that. when
in estimation. This correspondence lessens this problem by properly shifted, is symmetric and unimodal about the origin
extending the dom,-in of mathematical tractability to include and a cost function that is nonnegative, even, and nondecreasing
many cost functions that, even though pertinent to the subjec- to the right of the origin. For mutually Gaussian random vari-
tive demands of many problems, have in the past been excluded ables X and Y it follows easily that the resulting regular
from consideration. conditional distribution function is symmetric and unimodal

about EIXIY]Go) for any fixed w,. This special case explains
why Sherman's result is often invoked to add a flavor of general-

Manuscript received August 27, 1990; revised October 25, 1990. This ity to papers that consider Gaussian distributions. When one
work was supported in part by the Office of Naval Research under attempts to venture outside this somewhat limited arena, how-
Grant N00014-90-J-1712. This work was presented at the 27th Annual
Allerton Conference on Communication, Control, and Computing, ever, the conditions which Sherman placed on a regular condi-
Monti-ello, IL, September 27-29. 989. tional distribution function immediately begin to feel overly

E. B. Hall is with the Department of Electrical Engineering, Southern restrictive. The conditions on the cost function, however, arc
Methodist University, Dallas, TX 75275. extremely nonrestrictive and, in fact, allow for many interesting,

G. L Wise is vwith the Department of Electrical and Computer albeit impractical, choices. This imbalance suggests the possibil-
Engineering and th- Department of Mathematics, The University of
Texas at Austin, Austin, TX 78712. ity of lessening the restrictions on the regular conditional distri-

IEEE Log Number 9142965. bution function by perhaps slightly increasing the restrictions
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imposed on the cost function. The following lemma will allow us From the preceding inequality and [8, p. 79], the inner expecta-
to present such a result. tion, and thus this expression. is minimized when g(YI, - . Y,)

Lemma 1: Assume that F is a symmetric probability distribu- = M(Y 1, " ", YJ)-
tion function and that 4>: R -- + [0,c) is even and convex. Then We will next present a useful corollary to Theorem 2 Lu

k e N, (fP) be a probability space, X be a randorm %ari-
f 0,4 ) dFx)<_Jf(x -a)dF(x), for all a eR. able defined on (f)../'. and Y be a random vector defined

R on (M /,,P) taking values in R". Recall that F(tY y) is said

Proof: Since 4) is convex we see that )(x)•_(0/2)4(x - a) to be a regular conditional distribution function for X given
+(0/2)4D(x + a). Further, since F is symmetric and 4) is even, Y= y if for each fixed y( R4, F(xlY y) is a probahilitý di'v
we see that tribution function as a function of x, and for each fixed

xER. F(x!Y-y) is a version of the regression function
E[I.. 1 (X)!Y= y]. Further. recall that a regular conditional

bi 40(x + a) dF(x)-f P(x - a)dF(x). distribution function for X given Y= y always exists [e. 9. pp.
a R 372-376]. The next corollary, which follows straightforvardlk

Thus, we see that from Theorem 2, removes the need to work on the underlying
probability space.

I Corollary 3: Let k e N, (flMY, P) be a probability space. X
f-(x)dF(x).•.jf4)(x-a)dF(x)-+jf4)(x+cr)dF(x) be an integrable random variable defined on (f 1, P), Y be a

random vector defined on (fl,.Y/,P) taking values in R•, and
M: R' -- R be any Borel measurable function equal a.e. [;A I to

f-DP(x - ) dF(x). E[XIY=y]. Further, assume that, as a function of x with
fixed, a regular conditional distribution function of X givern

Lemma I will allow a result similar to that given in [M] to be Y - y, denoted by F(xIY = y), is such that
stated for a much less restrictive family of regular conditional
distributioii functions by slightly restricting the family of allow- F(x + M(yY =
able cost functions. In particular, we will be able to drop the is symmetric. Then g = M minimizes
restriction that the conditional distribution function be uni-
modal by requiring that the cost function, in addition to the E[4,(X - g(Y))]
previous restrictions, also be convex. Notice that requiring the
cost function to be even and convex implies that it is also over all Borel measurable functions g: pA -- where 4. R-
nondecreasing to the right of the origin. [0,x) is even and convex.

We are now in a position to state and prove the following
resulL II1. A NoN-GAUSSIA% APPLICATION

Theorem 2: Let k e N, (M , P) be a probability space, and The following example illustrates the usefulness of Theorem 2

X,Y," ',Y, be random variables defined on (M, _., P), with X and Corollary 3 and shows how these results may be applied to
integrable. Let M: R' -- R be a Borel measurable function non-Gaussian distributions. In particular, given any real .alued
suchthrabe.Let M : -Borel measurable function g(.), we show that there exists asuch that M(Y,(a),-- .,}•(•))= E[XjY,"- ",Y,j(w) a.s., and let
F: R x l --4[0, 11 be a regular conditional distribution function random variable X and a random variable Y, possessing a joint
of X conditioned on or(Y,,y,) such that density function, so that E[fD(X - h(Y))] is minimized whenh(-)= g(-) for any cost function 4) that is nonnegative, even.

F(x + M(Y,(ao),. , and convex.

Example: Let g: R -- R be Borel measurable and define

as a function of x with wj fixed, is symmetric. Then M mini- I
mizes the quantity E[4)(X- f(Y 2 ,- -,YA" over all Bore] mea- f(x,y) = - exp( -exp(lyl)lx - g(y)+ K!)

_ surable functions f: Rk- - R where 4D: R - [0,-) is even and 8
convex.

+ - exp(-cxp(!yi)x - g( y)- K).
Proof." Lemma I and a change of variables imply that for 8

each fixed w and for a E R, where K is some fixed real number. Note that f(xvy) is a joint
probability density function sincef4(z- M(Y1(w),, -•,~w~ dF(x,,,)

fjf(x,y)dxdy=ff- exp( -exp(lyl)Ix - g( y)-- KI)

+ -exp(--exp(Iy!)lx- g( s)- K!)dxtd•

Let g: k -_ R be a Borel measurable function by which X is to 8

be estimated and E[l(X - g(Y,,,Y, ))] minimized. Note that I

-= fRfR exp( exp(IyI)I.-i) dzd)

E[ E[l0( X - g(Y,, •, Y•))cr(Y, ''Y, )I. fR• cxp( - lyl)dy I.
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Let X and Y be random variables such that the pair (X,Y) Theorem 4. Let (Mt. 1P) be a probability space. :/ be j

has a joint density function given by f(x,y). Notice from the a-subalgebra of , and X be a random variabt,: defined on
above calculation that a second marginal density of f(x.y) is (kl,./', P) such that X is integrable. For each w E. 12. let
given by fy(y)=½exp(- Iyl). Also, notice that f(x + g(y),y), M(w)= E[Xk/X.), and assume that there ex0,,tN a refuter

as a function of x with y fixed, is even. Recall that a version of conditional distribution function of X conditioned on .-/. F.
E[XIY - y] is given by ftxf(x, y)/fr(y)dx. Fixing this version R x fQ-- .0,11, such that F(x + M44(w).w as a function o(f x
and using this expression for fy( v) implies that with w fixed, is symmetric. Then M minimize,, the quotit•

El 4( X - )h) over all :V-mcasurable random variables A. %, here
EfXIY - y] (V R--[0,:) is even and convex.

-=2exp( y x)" (exp( -exp(v) x - g( y)+ K!) Proof., Lemma I and a change of variables impl that for
i 8  each fixed w and for a C R.

+ exp( - exp(Jy1)tx - g(y)- KI)) dx

-2exp(lyi) ((z + g(y) - K) fit 4(x - M(to)) dr(x, w) <_ f 4(-a - Af(wo)) dF(%.w
s J

+ (z + g(y) + K)) .1 exp( - exp(y1)-11) dz Let , be an .:Vmeasurable random variable by %,hich X is tobe estimated and E[4P(X- )•) mitimized. Note that

= 2exp(JyJ)(2(g(y))+ K- K) 4exp(ý),) = g(y). E[4(X- .,)] . E[E[D(X- ): ):/JJ.

Since f(x, y). as a function of x for y fixed, is even about g(y), From the preceding inequality and [8, p. 79]. the inner expecta-
it follows that the conditional density function f(x. y)/fy(y) tn and thus the above expression, is minimized 'hen X M
shares this same property. Thus, it is easy to see that the as

associated regular conditional distribution function, when prop-
erly shifted, is symmetric (and not unimodal if K * 0).

Corollary 3 may thus be applied to see that h(.) = g(-), which V. CONCLUSION
we recall was an arbitrary Borel measurable function, minimizes
E[4'(X - h(Y))] over all Borel measurable functions h: R - R In this correspondence we have considered the problem of

where (V: R -[O,ml is even and convex. Notice thal this exam- optimal estimation of a random variable X based on an obser-
pie illustrates the applicability of Theorem 2 in a situation vation denoted by a random vector Y. We have giken a mild

where Sherman's result would not apply, and, in addition, it restriction on the regular conditional distribution function of X

demonstrates the applicability of these results to non-Gaussian given cr(Y) that ensures that E[UP(X - g(Y))] is minimized for

distributions. Notice further that this example also points out any cost function 4 that is nonnegativc, even, and comex.

that the existence of a joint density function in no way guaran- Further, we have shown that given an'. real valued Borel ina-

tees that a regression function will obey any regularity property surable function there exist random variables X and . possess-

other than Borel measurability. ing a joint density function, so that the chosen function is an
optimal estimator, with respect to any of the cost functions

IV. THE GENERAL CASE previously described, of the random variable X based on the
random variable Y. The results were then extended to estima-

The preceding development was concerned with an attempt to tion of X based upon a random variable that is measurable %kith
estimate the integrable random variable X based on a Borel respect to any given o'-subalgebra.
measurable function of the random variables Y," --", Y,, where k
is a positive integer. In this case, our estimate was a
o(Y,-. .,Yk)-measurable random variable. Notice that it REFERENCES

straightforwardly follows that o,(Y, ' ,Yk) is countably gener- [1 S. Sherman. "Non-mean-square error criteria." IRE Trans Inform.
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C. Decentralized Estimation

With a reasonable effort one may combine the results in
Appendices A and B to result in methods of fusing best estimates
where the field obsirvers estimate under different fidelity criteria
For example, we presented results of this nature in Appendix C
which appeared in the paper entitled, "Decentralized estimation with
nontraditional fidelity criteria and corrupted estimates," which
appeared in the Proceedings of the Twenty-Sixth Annual Conference
on Information Sciences and Systems.

In the context of decentralized estimation, there is a need to
efficiently and effectively piocess the estimates provided by
multiple seisors. It is this problem of how best to fuse the
separate estimates that is tho ý,,sence of decentralized estimation.
This paper was concerned with decentralized estimates when the
estimates provided by the various sensors were corrupted by noise
during transmission to the central processor and when different
fidelity criteria were used by the different sensors. Decentra!ized
techniques arise naturally in a number of diverse applications such
as radar tracking, fault tolerance, two-way communications, highly
redundant sensor systems, image processing, impact point
prediction, moving source location, map updating in oceanography or
meteorology, multiple sensor navigation systems, surveillance and
search systems, underwater acoustic telemetry, power systems,
object recognition, and communications between subsystems along
unreliable or limited channels. Decentralized procedures promise
many advantages over their centralized counterparts. For exampie,
they may offer increased system reliability and fault tolerance,
increased immunity and resistance to noise and jamming, increased
accuracy, increased data compression and rate reduction, increased
isolation and recovery capability, a parallel structure ',seful when
processing a large volume of information, increased processing
speed, increased computational efficiency, increased coverage, and
an increase in the overall robustness of the system. In this paper it
is shown, in contrast to previous results, that in a general additive
Gaussian noise setting a decentralized procedure may produce the
same estimate as a centralized procedure without the need for any
intersensor communication.
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Abstract power systems, object recognition, and communications be-

tween subsystems along unreliable or limited channels
D e c e n t r a l i z e d e s t i m a t i o n t e c h n i q u e s a r e p r o p o s e dD e n t a i d p r c u e s r o s - v d a t g s

based upon models that allow different nontraditional cost over their centralized counterparts. For example. decen-
functions to be employed by each sensor and allow for noise

tralized procedures may offer increased system reliabilty
to exist between the sensors and the central processor.

and fault t, lerance, increased immunity and resistance to

Introduction noise and jamming, increased accuracy, increased data com-
pression and rate reduction, increased isolation and recav.In the context of decentralized estimation, there is a ery capability, a parallel structure useful when processing

need to efficiently and effectively process the estimates pro- a large volume of information, increased processing speed.
vided by multiple sensors. Indeed, it is this problem of increased computational efficiency, increased coverage, and
how best to combine or fuse the separate estimates that is an increase in the overall robustness of the system.
the essence of decentralized estimation. This paper is con-
cerned with decentralized estimation when the estimates Although much has been written on the subject d
provided by the various s.nsors are corrupted by noise dur- decentralized estimation and data fusion, many important

ing transmission to the central processor and when different questions remain unanswered. Further, when answers have
fidelity criteria are used by the different sesors. appeared they have often been incorrect or misleadiig For

example, is it true (as intuition might suggest) that a decm-Decentralized techniques arise naturally in a number
tralized procedure can produce the same optimal estimate

of diverse applications. For example, decentralized tech-
produced by a centralizted procedure if and oaly if the men-

niques have been proposed in the areas of radar tracking, sots by aloentoacozdunicedur eacn l other 7 In Ml]

sors are alowed to communicate with ec te"I 1fault tolerance, two-way communications, highly redundant it is flatly stated that for a decentralized estimation struc-

sensor systems, image processing, impact point prediction, ture to be effective the local sensors must communioas

moving source location, map updating in oceanography or with each other, and in [2) a decentralized pr 1cedure h"

meteorology, multiple sensor navigation systems, surveil- been proposed based upon additive noise and intersenio
lance and search systems, underwater acoustic telemetry, communication that provided the same estimate as a CM
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sornable rules for data fusion in such a general setting In
tralized procedure. In [3), however, it is shown, in contrast

the next section we extend this example to include many
to the previous results, that in a general additive Gaussian

non-Gaussian distributions.
noise setting a decentralized procedure may produce the

same estimate as a centralized procedure without the need A Counterexample

for any intersensor communication.
As in 14], let n > 2 be an integer and consider ran-

dom variables (X1 .... , X) that have a joint probabilityData Fusion density function f : R' -. R of the form

In 13] the problem of decentralized estimation was r r
considered in a general setting. In particular, it consid- f(x1  X.) l(x)j l . x, (x,: x, E R

ered the problem of estimating a fixed second order ran-

dom vaxiable X defined on a probability space (f0, F, P) where f:R -. R is a standard Gaussian density function

via a combination of estimates of the form E[X I Yj] where It follows that the random variables in {X1 .I. XI each

1 < i :5 n and Y1 , ... , Y. are random variables also de- possess a standard Gaussian distribution. Further, it fol-

fined on ((I, T, P). That is, [3] considered the case in lows that, whereas the random variables in {X 1 ..... X0 } t.

which the central processor was provided by each sensor are not mutually independent, the random variables in any

with a best mean square estimate of X as a Borel mea- proper subset of {X1 ... , X. } are mutually independent.

surable transformation of the observation Yi. Focusing at- Next, as in [1], consider a density function g for which

tention on Borel measurable transformations of the data the function g: R' -. R defined by

it follows that the central processor must find a way of

approximating E[XIY 1 ... . Y.) based on random vani- g(yl ..... yn) = 9(yi) 1 + yi j(yi); yi E R

ables from the set {E[XY 1 ] ...., E[X [Y.]}. (That is, it L .

must approximate the orthogonal projection of X onto is nornegative and integrates to 1. Let n > 2 be an integer.

L2 (fl, 0-(Yl, ... , Yb), P) using the orthogonal projections If {Y1 , ... , YI} are random variables with a joint density

of X onto L2 (fl, ar(Yj), P), ... L2(fl, (Y.), P).) Thus, function given by g then, paralleling the work in [4]. it fol-
from a theoretical perspective, one seeks conditions under lows that each random variable in {Y1, ... Y. } possesses a
which E[X I E[X I Y1), .-- , E[X Y.)] may provide a good density given by g, and further that, although the random

approximation to E[XIY1 .... , Y.]. Unfortunately, posi- variables in {Yi, .. -, Y. are not mutually independent,
tive results to this question are elusive in many common the random variables in any proper subset of {Y1 _... , Y. }
settings. For example, (as shown in [3]) even if X is a are mutually independent. Note that g(yi, ... , y.) is non-

Gaussian random variable, the observations {Y 1, .. , Y.) negative and integrates to I if Ix (x)] < 1 for al x E R and

are mutually Gaussian random variables, and the problem if fR x j 2 (x) dx = 0.

expands to include estimates from the sensors of the form4,0 Now, let f be any probability density function such that

E[X I ] where V is a or-algebra generated by any nonempty )xi(x)l _< 1 for all x E R and such that fR x 2(x) dx = 0, let
proper subset of the observations (that is, the problem n > 1 be an integer, and let {X, Y1, Y. I be random
expands to allow estimates from the sensors of the form v p

E[XI Y,, jJ or < ),it til miht ot e ps- variables possessing a joint density function f : R"+*- R
E[X [ Y, ..... Y~j• for k < n), it still might not be p~s- of the form

sible to provide a reasonable estimate for X based on the f(X Y.)

data from the sensors. Thus, even invoking the ubiquitous a

Gaussian assumption and allowing any proper subset of the "f(x) f(yi) 1 +xf(x) yJf(yi) ;x, yi ER.

sensors to communicate may not be enough to establish rea- i H1i
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Since the conditional expectation of X given any proper cost to a far-miss than to a near-miss even though the re-

subset of 11 ,...,Y. I} is almost surely zero, it follows that suit in each case is the same. Clearly, the mean-square

any attempt to estimate X via best Borel measurable trans- cost function is not a very good choice in this commonly

formations of random variables from proper subsets of the encountered situation. Such an example demonstrates the

data is hopeless, great need to extend the domain of mathematical tractabil-

ity to include many cost functions that, though pertinent

Non-Mean-Square Cost Functions to the subjective demands of many problems. have often

been excluded from consideration. e
Now we direct our attention toward non-mean-square

cost functions. Given two random variables X and Y In (61, general conditions were given allowing fo simul-

defined on a common probability space, a frequently en- taneous use of any cost function that is nonnegative, even.

countered problem in estimation theory involves finding a and nondecreasing on [0, 00) or any cost function that is

function g:Rý--R that minimizes E[4(X - g(Y))] for some nonnegative, even, and convex. Further, these results were

cost function A:R -+ [0, co). Generally, one is onafrvted applied to non-Gaussian situations and extended to cover

with two concerns in choosing an appropriate cost func- estimation based on random variables measurable with re-

tion. First, one is concerned that the cost function should spect to a o-algebra generated by a random object. In the

adequately reflect the cost one wishes to as-itste with an next section we apply these results to the area of decentral-

error, and second, one is concerned that the cost function ized estimation.

should result in a problem that is mathematically tractable.

Traditional cost functions, such as the popular mean-square t

error cost function, are usually chosen solely on the basis

of the second of the above two concerns. As a result, the

fidelity demands of the specific problem under considera- Recall that a probability distribution function F is

tion are rarely relied upon, and, in fact, are often not even symmetric if for all real x, F(x) = 1 - limhbo F(-x - h).

considered when determining the cost function that will be The following result follows directly from Theorem I in [3]

used. 
and Theorem 2)n [6].

This sacrifice of suitability for mathematical ease in the Theorem 1: Consider a probability space (fl, Y, P)

choice of a cost function should be the cause of some con- and random variables X, NI, ... , N. defined on (fl, Y, P)

cern since the traditional choices are unsuitable for many where n is a positive integer and X is a second order ran-

problems in estimation. As an example, consider the prob- dom. variable. Further, assume that for each positive inte-

lem of estimating the position of a projectile. If one is in- ger i <_ n, Ni has a zero-mean Gaussian distribution with

terested in shooting down the projectile then a small eiror positive variance given by ail, and that X, NI N..N are iti

in the estimate of its position may not result in a penalty. mutually independent, Let Yi = X + Ni for i -- 1.. n

If, however, the error in the estimate is such that the pro- and assume that a regular conditional distribution func-

jectile is missd then the penalty might suddenly become tion F:R x -- [0, 1] of X conditioned on a(Yi) exists (0,

enormous. Further, this penalty should not increase if the such that F(x + E[X I Yi1 (w), w), as a function of x with ap

error in the estimate becomes even larger since the result w fixed, is symmetric. For each positive integer i :5 n.

of any two such errors is the same. The mean-square error let I;:R -- [0, o) be even and convex. For each posi-

cost function applied to this situation penalizes small incon- tive integer i < n, there exists a Borel measurable function i <

sequential errors, assigns almost identical costs to barely h1:R --+ R that minimizes E[4'(X - h(Yi))] over all Borel tr

hitting and barely missing the target, and assigns a larger measurable functions h. Further, there exists a Borel mea- fixe
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surable function g:R' -- R such that E[X I ..... we have

tanh( tch-'(EIX IY) - tauh E tanh-'(",A) )

Fusion with Inter-Sensor Noise

The following example was shown in [3]. -< tanh-'(E[X YiJ) - tanh-'(V,)!

Example: Assume that all of the random variables in this 5 .jtanhi'EX I Yj) - tanhlr(VO'

example are defined on the same probability space denoted

by (1t, Y, P). For each positive integer i < n, let N, be <

a zero-mean Gaussian distribution with positive variance I J a2

given by au?. let X be arandom variable such that P(X= Ii IC

1) = P(X = -1) = 1, assume that X, N .1,No are 1=-'o2 i=1 )" /.1

mutually independent, and let Y1 = X + Ni. It follows from Next, note that, for any positive "iteger i < n and any

[3) that a version of E[X IYi = yj is given by tanh positive number c< 1,
and that

P IZ' I > s< ,
E[X IY,,.-...Y]= tanh :tanh-'(E[X 1Yi]) a.s. Y'a

a i= Thus, given any positive p < 1 and any positive e < 1, the

To begin, in the context of the previous example, note upper bound above may be made less than with proba-
bility pby choice of aand M fori =1,...,n.

that E[XI Y1I possesses a density function ci:R -- R of the

form Finally, for r > 1, note from above that

°ici(t) = 1 d5(ut 2 tanh-1 (t)); Itl <1 E[itah(tanh-(E[X 1Y1])

[eI ( y ) + exp (-( 1 . t anht ah'V IC nA

di(y) 20,', ~ (Y 12 ) 2ai .- I~•a~1V)

Also, note that jta~nh(x 1 ) - tanh(X2)i < IXI - X21 for all (1Y (~ 1ZIl
X1, x2 E R and, for 0 < a < 1, that Itanh-'(xi) - ko)

tanh1 '(X2 )1j S-L- I.XI - x~ for all X1 , X2 E [-a, a].i~

Consider now random variables Z1, ..... Z defined on \- "

the same probability space as above such that, for each pos- Also, note that

itrre integer i<_n, Z3 is Gaussian with zero mean and pos- [tn ta -EXYj)
itive variance s2 and such that X, N1 ,. No, Z1, Z,

are mutually independent. Let a be an element from

(0, 1). Further, for each positive integer i < n, let $, be tanh tanh-'(Vi)) Ic' U,

a positive number, let Wi = #,E[XIY 1 ] + Zi, let Ai =

{w E Q :IWl 5 a}, and let V, = •WIIA,. Let 2rP(CFUAF).

Ci = {w E fl : IE[XI Yj [ a} for each positive integer Thus, it follows that the rth mean of the error between our

i < a and note that P(Af) and P(Cf) may be made arbi- estimate and a best Borel measurable mean square estimate

trarily small by choice of a and M,. Next, note that for each of X without inter-sensory noise may be made arbitrarily

fixed positive integer i n, it follows that for w E Ci n Aj small by choice of o and for i =1..n.
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D. Multidimensional Quantization

Results on multidimensional quantization are presented in the
paper entitled, "A result on multidimensional quantization," which
will appear in Proceedings of the American Mathematical Society
and is given in Appendix D. Multidimensional quantization often
arises in an effort to use digital processing techniques on data,
since a quantizer is literally at the heart of analog to digital
conversion. In this appendix we show that a popularly used
technique for designing multidimensional quantizers fails
spectacularly.
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A RESULT ON MULTIDIMENSIONAL QUANTIZATION

ERIC B. HALL AND GARY L WISE

(Communicated by George C. Papanicolaou)

AisTRAcr. For any integer N > I, a probability space, a Gaussian random
vector X defined on the space with a positive definite covariance matrix, and
an N-level quantizer Q are presented such that the random vector Q(X) takes

on each of the N values in its range with equal probability and such that X
and Q(X) are i.ndependen.

INTRODUCTION

Quantization, the process by which a set is mapped into a finite subset of a
given cardinality, plays a pivotal role in virtually any application that requires
analog to digital conversion; indeed, it is at the heart of much of modem digital

technology. In such applications, a quantizer is often taken to be a function
mapping Rk into a svbset of Rk of cardinality N, where k is a positive .
integer and N is an integer greater than one (see, e.g., (1, 5, 3, 6, 2, 8 0)). In
this paper we present what might be a surprising consequence of such a gener-a l-.
approach to quantization. 7

DEVELOPMENT

For a topological space T, we will let 3(T) denote the family of Borel
subsets of T. For a set S, we will let P(S) denote the power set of S and Is

denote the indicator function of S. By a standard Gaussian measure we will
mean a Garssian measure whose first moment is zero and whose second mo-

ment is one. Let k be a positive integer. For any measure m on (Rk, .(Rk))4...__-j ifjseF'kt kek
we will let m. denote the inner measure on(Rk, p(Rk)) induced by m and ?{'oO+hC!i1

we will let m" denote the outer measure on (Rk, P(Rk)) induced by m. Re- O.S "-V

call from [4, p. 61] that if B E .q(Rk) and A E P(Rk), then m. (B n A) +

m*(B n AC) = m(B). We will let A denote Lebesgue measure on (R, R(R)) -/
and, for integers k > 17 we will let A denote Lebesgue measure on (Rk-.R(Rk)).|
where k will be determined from the context. Recall that for a measure space" .. :.-

(Rk, 3(Rk), m), a subset S of Rk is said to be a saturated non-m-measurable
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set if m.(S) = m.(Sc) = 0. Finally, a k-dimensional quantizer of a ran-
dom variable X defined on a probability space (01, 9, P) is any function
Q: Rk -- F such that F is a finite subset of Rk, such that Q(x) = x for all
x in F (i.e., such that Q restricted to F is the identity map on F) and such
that Q(X) is itself a random variable defined on (fl, Y, P). If F is a finite
subset of Rk with cardinality N then a quantizer Q: Rk -. F of a random
variable X is said to be an N-level quantizer.

The following lemma is proved in pp. 381-3821.
Lemma 1. For any positive integer M there exist M dis'oint subsets Z, , Z21 , IV , ýI
ZMV of the real line such that Z, ,Z 2 ,..., and Z = Z u
are saturated non-A.measurable sets. -k "• 2,- / '

The next result is an immediate cons quence of Lemma 1. pIrase.

Corollary I. For any integer N > I there exist N subsets T1, 7"2, ... , Ty of
the real line that partition the real line and are such that for each positive integer
j < N, T1 is a saturated non-A-measurable set.

For our purposes the following corollary will prove useful.

Corollary 2. For any positive integer k and any integer N > 1, there exist N
subsets S1 , S2 , ... , Sj of Rk that partition Rk and are such that, for each
positive integer j < N, Sj is a saturated non-A-measurable set. Ovok, C.rded.
Proof. For k = 1, the result follows from Corollary 1. J "sume k > 1. Let 0- "•- l'ac

e. T 1,..., TN be a partition of the real line as given by Con -:ary 1. For positive
integers j < N, let Sj = Tj x R x ... x R c Rk I Fix a positive integer j <N N
and assume that there existsa set B E q(Rk) such tha CS andA(B)> 0 •- J. JS•k
Define a subset Bý of R as follows-:

,={biER: (bl, b2 , ... , bk)E B for some (b2 ... , bk) E R k-.

Recall from [7, p. 161 ])that J E .T(R). Further, notice that A(h) > 0 since
BcBxRx...xR c Rk and A(B) > 0. But, A(B)= 0 since B c Tj
and A.(Tj) = 0. This contradiction implies that A(B) = 0 and hence that
A.(Sj) = 0. It follows similarly that A.(Sý) = 0 also. Q.E.D.

Lemma 2. For a positive integer k and an integer N > 1, let S1 , S2 , ... , SM
comprise a partition of Rk such that for each positive integer J_< N, Sj is a
saturated non-A-measurable set. The set It

.5r = {(Sin A,) u ... u(S nAN) : Ai E.9(Rt) for I < i < N}

is a a-algebra on Rk.
Proof. Choosing Al = ... = ANe = 0 implies thate E0 E6. Let A be an
element of Y9. Then A = (St n A1 ) U ... u (SN n A q) for some choice of the
Al's from (.Rk). Further, Ac = (SI n Ai)C n ... n (SN fn AN)c. Since

N
Ste U s,,

j=,1 (ti).

it follows that
N, N

AC=nf U sjuAx.

1-eJ40 .
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Hence A' is a finite union of sets, each of which is of one of the following
tivee forms: , -

(:) S,f n...n&S, nB khere I nj < .-. <nk _<N, k> I, and BE .q(Rk);
(i,) SjnB for I <j__N and BE.M(Rk);
(id) BE • (Rk) .

*- Every set of the form given by (i) is empty since the S8 's are disjoint. Further, " t)O .'T
anyset B E._q(Rk) may be expressed as B=(SIfnB)U...u(SvNB). Hence, j "•••NT
A' is an element of Y'. -

Finally, if B1, B, ... are in Y", then for some choice of the A. j's from
.•V (R k ) , -: . 1 1. . . .

UBi = U N s,riA,.,) = fls nJ,,

Recall that two measures P, and P 2 on a given measurable space (1, V')
are said tobe equivalent if {AE9':P,(A)=0} = {AE.:'" P2(A) =0). Notice
that for sets St, S 2 , ... , SN as above, it follows that, for any positive integer
i < N and any .(Rk)-measurable set H, P.(SinH) =0, P.((S•' n H) =0,
P-(S, n H) = P(H), and P'(S, n H) = P(I) for any probability measure P
on (Rk, ._(Rk)) that is equivalent to Lebesgue measure on (Rk, ,R(Rk)). The
following lemma will be used in the proof of a subsequent theorem.

Lemma 3. For a positive integer k and an integer N > 1, let S1 , S2 , ... , Sv
comprise a partition of Rk such that for each positive integer j < N, Sj is a sat-
uratedz.jjAmeasurable set. Let P be a probability measure on (Rk, .RWk)) .iyr. .
that is equivalent to Lebesgue measure on (Rk, .q(Rk)). Let A , , ... , AN and
B 1,..., Bpv be sets from .q(Rk) such that

(Si n A,) U-.- U (SN n Ay) = (S n BI) u--. u (SN B EN).

Then P(AAB,) = 0 for any positive integer i < N where for any two subsets
A and B of RAk, ALB denotes the symmetric difference of A and B.

Proof. Fix a positive integer i < N. By assumption,

(SI n Ai) U... u (Sly n AN) = (S1 nlBI) u ... u (Sv n BN).

Intersecting each side with S1 implies that (St n A) = (S n B,); which implies
that (S onAi) n (S n B3 )c = (S OnA,) n(S' u Bf) = (Sn Am, nST)u(S NA On B) =
(Si n Ai n Bf) = o and, similarly, that (S: n BI n Ac) = z. Thus, we see that
(St nA• nB') u (S• nB An Ac) = Sifl (AgtBi) =•0. Since (AiABt) E .(Rk), it
follows that P(AdABi) = P*(SI n (A1LB,)) = P*(O) = 0. Q.E.D.

The following theorem provides a probability space upon which the principal
result of this paper will be based.

Theorem 1. For a positive integer k and an integer N > 1, let S, , S2 , ... , SN
comprise a partition of Rk such that for each positive integer j <_ N, Sj is a sat-
urated non-A-measurable set. Let P be a probability measure on WRk, 3(Rk))
that is equivalent to Lebesgue measure on (le, M(Rk)), There exists a prob-
ability space (Rk, 9', A) such that V includes ,(Rk), such that 9 contains
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, Sly, such that the measure u agrees with P on .R(Rk), and such that
3(Rk) is independent of a (S1 ... , SN).
Proof. Let .V be the u-algebra Y provided by Lemma 2. Recall that Y'
contains all sets of the form S n A,) U .. u (S,, l An) where Ai E ._T(Rk) for
each positive integer i < N. if A E R.(Rk) then choosing A1 =l.. = AN = A
implies that A E 9'. Similarly, for any positive integer i < N, setting At = R
and all other Aj's equal to the empty set implies that Si E r'. Define a measure
p on the measurable space (Rk, W') via

.((Si n A,) u ... u (SN nlAN)) = •(P(Al)+ ... + P(AN))

for (S1fnA1)U-. -U(SNnAN) E 9'. That u is well defined follows from Lemma
3 and that pi is in fact a probability measure that agrees with P on .(Rk) is
then straightforward. Further notice that /u(S,) =/Ikfor each positive integer
i < N and that, for any set B E .R(Rk) and any positive integer i < N,
u(S, n B) = kP(B) = i(S,),u(B). Thus S is independent of .R'(Rk) for-each
positive integer i < N. Finally, notice that .R(Rk) is in fact independent of
a(S, ... , SSN) since {f, St, ... , SN} is a x-system. Q.E.D.

We are now in a position to state and prove the principal result of this paper.

Theorem 2. Let k be a positive integer and let N be an integer greater than,
one. There exists a probability space (fl, Y', v), a Gaussian random vector
X defined on (Q- 5Y, ,v) taking values in Rk with a positive defuiite covari-
ance matrix, and an N-level k-dimensional quantizer Q: Rk -. F such that
v(Q(X) = x) = 1/N for each x in F and such that X and Q(X) are inde-
pendent.
Proof. Let S, ... , SN be sets as provided by Corollary 2. For these N subsets
of Rk, let (fl, Y', v) be a probability space as provided by Theorem 1 where
P is chosen to be the product measure induced by placing standard Gaussian
measure on each factor of (Rk, .F(Rk)). For each positive integer i < N,
let a, be an element from St. Let F denote the set {ai, ... , Q}. Define
an N-level k-dimensional quantizer Q: Rk -- F via Q(x)= fz aJi3s(x).
Further, notice that the random vector X(co) = w; o) E 92, is a zero mean
Gaussian random vector defined on (n, Y', v) whose covariance matrix is the
k x k identity matr'x. Also, notice that for I < i < N, v(Q(X(W)) = ar) =
v(cO E Si) = 1/N. Finally, notice that X and Q(X) are independent via
Theorem 1. Q.E.D.
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Summary of Corrections to
PROC1451 (Hall and Wise)

1. In the sixth line of the introduction on page 1, references 8 and 10 should be changed to

become references 7 and 9.

2. In the sixth line of the development on page 1, a left parenthesis should be inserted

before Rk.

3. The following footnote should be added to the bottom of page 1:

"A preliminary version of this paper was presented at the 863rd meeting of the American

Mathematical Society."

4. Reference number 9 in the line above Lemma 1 on page 2 should be changed to become

Reference number 8.

5. The lowercase m in Zm in the statement of Lemma 1 on page 2 should be an uppercase

M as you have already indicated.

6. The second phrase "such that' in the statement of Lemma I on page 2 should be deleted
as you have already indicated.

* 7. The phrase "a set B r B(Rk)'' in the fourth line of the proof of Corollary 2 on page 2

should be deleted and replaced instead by the phrase "an Tcy subset B of Rk ". Note: Fj
is an uppercase script F followed by a subscripted lowercase Greek letter sigma.

8. The phrase "Recall from [7, p. 161]" in the 7th line of the proof of Corollary 2 on page

2 should be replaced by the phrase "Note".

9. The uppercase J in the second line of the statement of Lemma 2 on page 2 should be

replaced by a lowercase j.

* Items 7 and 8 correct a small but critical oversight in the proof of Corollary 2 that slipped

by both the authors and the reviewers and was not noticed until the proofreading stage. If
you have any questions regarding these two changes please don't hesitate to contact either
author. (Eric Hall at (214)-692-4367 or Gary Wise at (512)-471-3356.)



N N
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11. The sentence beginning with the word "Every" near the top of page 3 should not be

indented.

12. The hyphen following the word "non" in the third line of Lemma 3 should be moved
over slightly as you have already indicated.

13. If word "if' in the third line of the proof of Theorem 1 on page 4 should be capitalized.

14. The word "optimal" in reference 2 on page 4 should be "optima".

15. The name "L. Linde" in reference 5 on page 4 should be "Y. Linde".

16. The phrase "k means" in reference 6 on page 5 should be "k-means".

17. Reference 7 on page 5 should be deleted entirely.

18. Reference 8 on page 5 should be renumbered to become reference 7 and the journal
name "IEEE Trans. Inform. Theory" should be added as you have already indicated.

19. Reference 9 on page 5 should be renumbered to become reference 8.

20. Reference 10 on page 5 should be renumbered to become reference 9.

21. The phrase "Electrical Computer' should be "Electrical and Computer" in the second

address on page 5 as you have already indicated.

22. The phrase "University of Texas" should be '"The University of Texas" in the second

address on page 5.

23. The following email addresses should be included ;n the addresses:

author 1: ebh@smunews.smu.edu

author 2: gwise@ccwf.cc.utexas.edu



E. Multidimensional Convolution

Results on multidimensional convolution are presented in the
paper entitled "Some Aspects of Multidimensional Convolution"
which appeared in Proceedings of the 1991 IEEE International
Conference on Acoustics, Speech, and Signal Processing and is
given in Appendix E. It is shown that multidimensional convolution
need not be associative . Further, for any positive integer k , it is
shown that the multidimensional convolution of two real valued,

bounded integrable nowhere zero functions defined on Rk can be
identically equal to zero. These results are discusses in an
algebraic setting, and a consequence involving random fields is
briefly discussed.
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It is slbown that multidimensional convolution need not

be associative. 'Further, for any positive integer k, it is shown cause of some concern to one who is attempting to derive a

that the multidimensional coniolution of two real valued, general method of deconvolution. In this paper, we extend this

bounded, integrable, nowhere zero functions defined on Rk result to the case of multidimensional convolution.

can be identically equal to zero. These results are discussed in

an algebraic setting, and a consequence involving random
fields is briefly considered. Let k be a positive integern For a set S c Rk, we will let

Introduction IS denote the indicator function of the set S. We will denote

by LI(Rk) the set of all extended real valued Lebesgue

integrable functions modulo almost everywhere equivalence
Real valued functions of several variables frequently defined on Rk equipped with the norm given by the integral of

occur in such areas of signal processing as image processing, the absolute value of an element of LI(Rk). By a k-sequence

optics, and oceanography. In these areas, as well as in many of real numbers we will mean any function mapping Zk into R

others. convolution plays a major role. This paper treats where Z denotes the integers, and we will denote the value of

several aspects of multidimensional convolution which should such a function x at the point x via ax. A k-sequence will be
be of interest to the signal processing community. called absolutely summable if it is integrable with rspect to

In applications, multidimensional convolution often counting measure on the power set of Zk. Further, we will

arises when considering multidimensional linear systems. In occasionally denote points x in Rk as x = (x1, x2 . xk)
this context, the linear system is characterizee, via convolution where the xi's are real numbers. Finally, for two points x and

with an integrable function g and the input to the linear system y in Rk we will denote the Euclidean inner product via

is denoted by an integrable function f. The function h given by k

f convolved with g then denotes the resulting output. A (x, y) = Xj Y j.

problem which frequently arises in system identification is that j = I

of deconvolution which is concerned with approximating or Recall that the convolution of two functions f and g in

identifying the function g from a knowledge of the pair of L (Rk), denoted by f * g. is defined via

functions f and h. f

In [I Iit was shown that in a one-dimensional setting (-

there exist integrable, bounded, nowhere zero functions f and Rk

g such that f convolved with g is identically equal to zero. That provided that this integral exists for all x a Rk. Further, we

is, in the context of linear systems, there exists a linear system recall [2, pp. 247-2481 that if f and g are in Ll(Rk) then f * g

described via convolution with a fixed, bounded, nowhere is also in L1 (Rk) and satisfies Hf * g11L1 s 11fh 1 IIg!l.

zero function g which may be a nopass filter to an input which The following lemma shows that multidimensional

is nowhere zero. Clearly, such a phenomenon should be a convolution need not be associative.

Presented at the 1991 IEEE International Conference on Acoustics, Speech, and Signal Processing.
May 14-17, 1991; to be published in the Proceedings of the Conference.



-2--

Lemma 1: Let k be a positive integer. There exist three

bounded real valued Lebesgue measurable functions f, g, and (TaX(f))(x) = cy f(x - y) dC(y),

h defined on Rk such that, even though the convolutions are zk

each defined, f * (g * h) . (f * g) * h, i.e. such that where C denotes counting measure on the power set of Zk. for

convolution is not associative, any element f from LI (Rk). For any two absolutely

summable k-sequences of real numbers z and 0, it follows

Proof: Consider first the special case when k = 1. As in

[3, p. 177), for t and x real, define ((Ta o Tp) (f))(x) = Ta ( j fy f(x - y) dC(y))

p(t) = (0 - cos(t)) 1[0, 2 n](t) and let f(x) = 1, g(x) - p'(x), and Zk
Xrr

h(x) =f p(t) dt. Note that (f * g)(x) = Jf(x - t) g(t) dt = f J otz Py f(x - y - z) dC(y) dC(z)

-- 0 R Zk Zk

= fp'(t) dt = p(2n) - p(O)= 0. Further, (g * h)(x) = J Xy f(x - y) dC(y)

R Zk

where we define

= fg(x - 0h(t) dt =f p'(x 0 f p(s) ds dt= (p *p)(x) via f~ f cc ,i'.q)d~)d~)
R R1•=Zk Zk

integration by parts. Note that where gy(p, q) equals one if p + q = y and equals zero

2n otherwise. Finally, note that for any two elements f and g

(p * p)(x) = (I - cos(x - y)) (I - cOs(y)) I[x - 27t, x](y) dy. from L1 (Rk) it follows via Fubini's theorem that
0

Hence, (g * h)(x) is positive on (0, 4n) and zero elsewhere. * (Tp(g)) (Ta T[) (f g

Finally, even though (f * g) * h = 0, we see that f * (g * h) is a

positive constant. Theorem 1: Letting the above set notation, there exist two

Now, let k be an integer greater than 1. With f, g, and h non-identically zero absolutely summable k-sequences of real

defined as in the preceding paragraph, let f, j, and R map Rk numbers ca and [ such that for any f and g from LI(Rk),

into R via f(x) = 1, i(x) = g(xl) g(x2) ... g(xk), and h(x) = (Tcc(f)) * (To(g)) = 0.

h(x l) h(x 2 )... h(xk). It follows immediately that (f * g-) =0 Proof: Recall that the function lcos(x1)cos(x2) ... cOs(xk)I

and (j * h) is positive on (0, 47()k and zero elsewhere. Hence, is expressible as a multiple Fourier series given by

(f * K) * = 0 but f * (g * h) is a positive constant. j Cy exp(i (x, ))) dC(y)

Q.E.D. Zk

Next, consider two bounded, real valued, Lebesgue where it follows easily that cy -ay 1 ay2 ... ayk where an = 0

integrable functions f and g defined on Rk. Further, assume if n is odd and .(-l)n/21

that f and g are nowhere zero. Does it follow that f * g is an 2=1[ 1 .2

nowhere zero? Does it follow that f * g is nonzero on some if n is even. Further, if we define

nonempty set? From a linear systems viewpoint, does a f -(x) = 1 (icos(x0) cos(x2).,. cos(xk)l +

nowhere zero input to a linear time-invariant system described 2

via convolution with a fixed nowhere zero function result in an (cos(xl) cos(x2) -.. cos(xk))) and

output which is nonzero somewhere? f2(x) = I- (cos(x 1) c~s(x2) ... c~s(xk)-

To begin, we will need the following notation. For an (cos(xl) cos(x2) ... cos(xk))), then fl(x) f2 (x) 0,

absolutely summable k-sequence of real numbers o, define a fI(x) = f Cty exp(i (x, y)) dC(y),

boundd linear operator on LI(Rk) to LI(Rk) via Zk

and
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y Further, if there exists an element u in ( such that a - u - u.
f2(x) = J Py expui (x, y)) dC(y) a = a for every a in G, then G is said to possess a unit element.

Zk Also, ifa. b = b' a for every a and bin G then G is said to be

wY •(-,a commrnutative ring. Recall that for a commiutative ring G an
2fyE (-1,l1k element a * 0 in G is said to be a zero-divisor if tbere exists an

O'y = (1_ k if y r element b *0in Gsuch that a -b =0. Further, recall that a
otY= 4 y 1-1,k commutative ring is said to be an integral domain if it

and possesses no zero-divisors. For a morm complete discussion
i f y* {-1, 1 }k of rings, the interested reader is referred to [41.

= 2 kIt follows easily that L1(Rk) equipped with the
Sif y f.-.,Jýk. operations of poinrwse a-iition and convolution is a

But, fl(x) f2 (x) = 0 commutative ring R,; in fact, R is a commutative Banach

J oty exp(i (x, y)) dC(y) f 3y exp(i (x, y)) dC(y) algebra. Even though it can be seen that this ring possesses no

zk Zk unit element [2, p. 248], it does possess so-called
f f "approximate units" which often serve just as well for many= j ka 13 exp(i ((x, y) + (x, z~)))dC(y) dC(z)pros.

Zk Zkpups. The previous results can now be viewed in a different

f Xy exp(i (x, y)) dC(y) where, as before, setting. Recall that Lemma I showed that multicdimensional
Zk convolution need not be associative. Although this result may

seem surprising to some, notice that the function f given in the

=f f QpPq gy(p, q) dC(p) dC(q) proof of Lemma 1 is not an element of R. Further, from an

Zk Zk algebraic standpoint, the perhaps disturbing result of Scholium

and gy(p, q) equals one if p + q = y and equals zero other- 1 yields the following corollary as a direct consequence.

wise. Note that, via Fubini's theorem, .y = 0 for every y.

Thus, it follows that (Tt(f)) * (Tp(g)) = (Ta o Tp) (f * g) = 0 Corollary : Let k be a positive integer. The commutative
ring given by LI(Rk) equipped with the operations of
pointwise addition and convolution is not an integral domain.

Scholium 1: Let k be a positive integer. There exist two real
valued, bounded, nowhere zero, Lebesgue integrableHecCrlayIipestt(f*g 0cnocueven when neither f nor g is equal to zero. In fact, we have
functions defined on Rk such that their convolution isalto ero.actually shown something stronger via Scholiumn 1 since
identically equal to zero. it exhibits bounded integrable functions f and g defined on Rk

which are nowhere equal to zero and yet for which (f * g) isFroof: In the proof of Theorem 1, choose fix) = g(x) =

S(x) where S = (-,I )k. Q. E. D. identically equal to zero.
Finally, again let k be a positive integer. It follows from

Theorem 1 and Scholium I that there exists a random field
Before commenting further upon this result, we shall

detour for a moment to review a few algebraic concepts. (X)k-eR with integrable and a fnto
Recall that a nonempty set G and two ope~ations + and. formfRkRwhcisLbsuingrleadohrezosuch that f * X is identically zero. Such a result should be ofan associative ring, hereafter referred to as a ring, if G is an
Abelian group with respect to the + operation (denoting the interes to uthose ara chasnel radio astrenomy,
identity element by 0 and (a)-1 by -a), (3 is closed and underwater acoustics, and channel equalization where blind

deconvolution techniques are frequently employed.
associative with respect to , and finally if, for any a, b, and c
in G, a- (b + c) = a b + a c and (b + c) a = b. a + c' a.



Conclusion

In this paper we have considered multidimensional

convolution from an algebraic standpoint and presented a

result which may be of interest to the engineering community.

In particular, we showed that, for any positive integer k. the

convolution of two nowhere zero, bounded, integrable, real

valued functions defined on Rk may be everywhere'zero.

This result should be of interest to those attempting to identify

the input to a linear time-invariant system via some operations

on the output, such as in deconvolution problems.
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F. The Concept of Finite Memory of a Stochastic Process or of a
Random Field.

Results on the concept of finite memory of a stochastic process
or of a random field are presented in the paper entitled "A comment
on finite memory of stochastic processes" which appeared in the
September 1992 issue of the IEEE Transactions on Signal
Processing and is given in Appendix F. It is shown that a recently
proposed concept of finite memory for a zero mean strictly
stationary stochastic process results in a stochastic of random
variables each of which is almost surely equal to zero. We eagerly
note that the earlier work about which this paper comments was
work supported by the Office of Naval Research.
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ABSTRACT

It is shown that a recently proposed concept of finite memory for a zero mean strictly

stationary stochastic process results in a stochastic process of random variables each of
which is almost surely equal to zero.

DEVELOPMENT

Let k be a positive integer and let {X(t): t E RI be a zero mean, strictly stationary

stochastic process defined on some probability space and taking values in Rk. In [11 such

a stochastic process is said to have finite memory if there exists a positive real number D

such that for any positive integer n and for any n times t1 , t2 , . . . tn, the two sets of

random variables {X(tl), X(t 2 ), . . , X(tn)) and (X(t 1 + d), X(t 2 + d),. ... , X(tn + d))

are statistically independent for any real number d such that d > D. Here we note that such
a stochastic process is degenerate in the sense that any random variable in the stochastic
process is almost surely equal to zero.



First, consider the situation of a finite memory, zero mean, strictly stationary stochastic

process as above. Let 0 denote the origin of Rk; let n = 2; let t1 = -2D; and let t2 = 0. In

this case note that the set of random variables { X(-2D) and X(0)) and the set of random
variables (X(-2D + d) and X(d)) must be statistically independent for any d > D. If we
choose d = 2D, then we see that X(O) must be independent from itself, and hence, since

E[X(0)] = 0, we see that X(O) = 0 a.s. Now, since the stochastic process is strictly

stationary, it follows that for any real number t, X(t) = 0 a.s. Hence, for each real number
t, each component of the random vector X(t) is almost surely zero.
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G. Distribution of the Determinant of a Random Matrix

Results on the distribution of the determinant of a random matrix
are presented in the paper entitled "A note on the distribution of the
determinant of a random matrix" which appeared in the February
1991 issue of Statistics and Probability Letters and is given in
Appendix G. An analysis of the tail behavior of a probability density
function of the determinant of a random matrix is presented, and an
oversight in an earlier paper on this subject is noted.
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A.bstracv: An anal)sis of a probability density function of the determinant of a random matrix is presented, and an o neri& mn .tr
earlier paper on this subject is noted,

Keviords: Determent, random matri,.

Let A4, A4. A., and A4 denote four mutually the same as the distribution of the determmnant of
independent identically distributed random varia- M. Also, notice that there exist-, a pdf for 1i
bles defined on the same probability space and which is even and which is supported on ( -- 1. 1]_
uniformly distributed over 10. 11. Denote by M the For x f- (0. 1) we have that a pdf of 1$' at x.. sa\
following matrix: p(x), is given by

-- A, A 2  p( x ) = log( '' + x ) logi ii ) d k

3A' A4  ft,

In Williamson and Downs (1988), a graph was Using integration by parts, we get

presented for a probability density function (pdf) __I, __. - W lo(it) d w.
for the determinant of M. In this paper we show P(x) =,
that this graph provides a misleading representa-
tion for such a pdf. Now. upon simplification we get

It follows straightforwardly that the random p(x) = (1 - x)[2 - log(l - x)]
variable AA 4 has a pdf given by - X,(l))(x) log(x)
(all logarithms in our paper are Naperian loga- + x log( x) + x d -- -d
rithms). Let X and Y be independent random w4 X

variables defined on a common probability space. For a fixed positive number a. let h "0, 1) R
each having pdf -Xo1,(x) log(x). Further, let via
W = X - Y, Notice that the distribution of W is

h(w) = log(w) log(l +w/n)

This research was partially supported bv the Office of Nasal + f log{ )
Research under Grant No NOO14-90-J-1712.
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Note that hj I log( w )/( w + a). Thus we see and hence we see that p"(.x) > 0. Thus, we note
that that, restricted to (0, 1), p( ) is convex. This shows

0(K') that the graph given in Fig. I of Williamson andf ~ dw = - log( I - x) log(x) Downs (1988) is misleading as a representation for

Sa Jf of the determinant of M . and it points out L o c a+0 log(- t) a- mportant, yet often unheeded, caveat associ-ft- 1,. I att.a with truncation effects in numerical schemes. equa
and therefore we get that w ith
pk) (1 *-,02 - log(I - x)]

+ x log(x) - x log(l - x' Reference
l log(1 - t) 
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H. Stationary Random Processes

Results on stationary random processes are presented in the
paper entitled "A Cautionary Aspect of Stationary Random
Processes" which appeared in the Novemoer 1991 issue of IEEE
Transactions on Circuits and Systemsand is given in Appendix H. A
problem associated with determining the stationarity of a random
process from discrete time samples is noted. In particular, a
nonstationary Gaussian random process {X(t): t e R}is given such

that for any positive real number A, the discrete time random
process {X(nA): n e ZI is strictly stationary, where Z denotes the set
of all integers.
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A Cautionary Aspect of Stationary Random

Processes

Gary L. Wise

Abstract -A problem associated with determining the stationarity of a
random process from discrete time samples is noted.

Dt EVLOPMENT

Let (X(): t E R) be some random process. Let A be a
positive real number, and consider the random process {X(nA):
n - Z), where Z denotes the set of integers. In many practical
problems, one would be interested in knowing whether or not
the ran-am process {X(t): t E R) is stationary. However, due to
the current digital trend in signal processing, one might attempt
to determine the stationarity of (X(na): n - Z). What if {X(nA):
n e Z) were stationary for any positive real number A? Would
this imply stationarity of {X(t): t E R}? We show by an example
that the answer to this second question is no.

Let {Y(t): t f R) be a stationary zero mean Gaussian random
process defined on some underlying probability space, such that
E[Y(t) Y(t + 7)] = e- 1 . Define the stationary zero mean
Gaussian random process (Z(t): t E R) via Z(t)= Y(2t). Now,
define a zero mean Gaussian random process (X(t): t C R) via
X(t)= Y(t) if t is rational, and X(1)= Z(t) if t is irrational.
Observe that {X(t): t E R} is not stationary since if t and r are
rational, then E[X(t) X(t + r)]= e-l'!, yet if t is irrational and
,r is rational, then E[X(t) X(t + r)]= e-21t. Next, pick any
positive real number A. Note that if A is rational, then nA is
rational for all integers n. Also, if A is irrational, then nA is
irrational for all nonzero integers n. Further, Y(O) = Z(O) = X(O).
Hence, for all integers n, if A is rational, then X(nA)= Y(nA),
and if A is irrational, then X(nA)= Z(nA). Thus for any
positive real number A, (X(n A): n E Z) is a stationary Gaussian
random process, yet {X(t): t E R) is a Gaussian random process
that is not stationary.

Manuscript received July 12, 1991. This work was supported by the
Office of Naval Research under Grant N00014-90-J-1712. This paper
was recommended by Editor R. Liu.

The author is with the Department of Statistics, University of Califor-
nia, Berkeley, CA 94720.

IEEE Log Number 9102901.
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J. Martingale characteristics of a Weiner process

Results on a martingale characterization of a Weiner process are
presented in the paper entitled "A counterexample to a martingale
characterization of a Wiener process" which was planned to have
been given in given in Appendix J. We hasten to note that this
investigator has recently gone through the trauma of having
experienced a stroke. Unfortunately, he lost all of his
documentation of this paper at some time during this experience.
However, the paper should appear in the journal Statistics and
Probability Letters, and in it we show that a recently proposed
scheme for characterizing a Wiener process was incorrect. We
regret this omission in this report.



K. Estimation of a random variable based on multidimensional data

Results on estimation of a random variable based on
multidimensional data are presented in the paper entitled
"Estimation of a random variable based on multidimensional data"
which appeared in the Proceedings of the 1992 IEEE International
Conference on Acoustics, Speech, and Signal Processing and is
presented in Appendix K. Several aspects associated with the mean
square estimation of a second order random variable based upon
elemeuts from a random field are considered. Throughout the paper,
the oft-neglected role of the underlying probability space is
stressed. Numerous examples are presented that point out many of
the subtleties associated with this erndeavor.
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ABSTRACT

Several aspects associated with the mean square Mnl a.s. via standard properties of conditional
estimation of a second order random variable based upon
elements fror.i a random field are considered. Throughout expectaion. Thus, we see that (Mn: n r G) is a second
the paper, he oft-neglected role of the underlying order multiparameter martingale with respect to the
probability space is stressed. Numerous examples are filtration (F : n r G). We remark that the above
presented that point out many of ta.- subtleties associated n
with this endeavor, comments hold where (M, F. P) is any probability

space. Now we pose the question: how might one estimate
INTRODUCTION the random variable X fro-' the data (Yp: p e G) so as to

Let N denote the set of positive integers and let 0  minimize the mean square error?

denote the cardinality of N. Let k r N and let c be a PRELIMINARIES

positive number. Let S = (kr: k e N), and let G = Sk. We Before proceeding, we will review some definitions
may view G as a grid of points. For points and introduce some conventions and notations which will
t = (t1 , t2 .... , tk) e G. and s = (1' -.... sk) e G, we prove useful. We will let B(R) denote the family of Borel
write s:5 t to mean that si s ti for i = 1, 2....k. Note subsets of R. Fora set S, we will let P(S) denote the

that this relation is a partial order on G. This paper will power set of S and IS denote the indicator function of S.
be concerned with attempts to estimate a second order We will let R denote the set of real numbers. If A is a
random variable X via estimates of the form subset of R, -A will denote the set lx e R: -x e A). By a
E[X I Y p: p 5 n], where the Y p's are random variables standard Gaussian measure we will mean a Gaussian

indexed by G. Notice that (Yp: p e G is a random field, measure whose first moment is zero and whose second

Also, note that, in this situation, moment is one. For any measure m on (R. B(R)) we will

[E[X I Yp: p_5 n): n e G) is a second order random field, let m, denote the inner measure on XR, P(R)) induced by

Let (fE, .F, P) be a probability space, let X be a m and we will let m* denote the outer measure on
(R. P(R)) induced by m. Recall that for any subset A of R.

second order random variable defined on Q F m and rn are defined via m.(A)
let (Yp: p e G I be a rmndo fie eined on of n, P).m )AB eB(R)and (A)
For each n e G. pick wid fix a version of E[X I Y p : p 5 nj. irif( m(B) : A c B e B(R) . We will say that a subset S of
For n E G. let Fn = O(Yp: p!5 n) and let Mn = the reals is saturated non-m-measurable if rn.(S) = m,(Sc)

IFn]. As noted above, Mn is a second order rando 0. We will let X denote Lebesgue measure on (R. B(R)).
variable. Further, Mn is !T n.measurable. Finally, note Throughout this paper, we will let n and p. with or

that for n1 and n2 in G with ni 5 n2 . E[Mn2 I Frl= without subscripts, denote elements of G; we will let m.
EEX I p!5 n2 I p rill = EX I pSTiv, P, and pt denote measures; we will let i, j. and k denote

Epp ni =positive integers; and we will let N denote an inte&.r

greater than one.

Presented at the 1992 International Conference on Acoustics. Speech, and Signal Processing, March 23-26, 1992.
San Francisco, California; to be published in the Proceedings of the Conference.



The following result is developed in [1).

Theorem 1: Let N be an integer greater than I. There DEVELOPMENT
exist N subsets S, S 22 ..... SN of the real line that

partition the reals and are each saturated non-Lebesgue The development will be a set of examples wiachmeasrable. Letting $1S •S be as above and letting g will serve to indicate sonie problems which may await the"r unwary investigator. In particular, these examples
be a probability measure on (R. !B(R)) such that g is suggest the importance of a careful consideration of the

equivalent to Lebesgue measure on (R, B(R)), there exists underlying probability space.
a probability space (R. G. P) where G is given by EXAMPLE A: For an integer N> 1. let SI.....be
{(S'u"B1 ) t... .u(SNO•BN): BiC'B(R) for i=l... N)

subsets of the real line that partition the reals and are each
and where P((S 1rýBO1 ) ... U(SNnBN)) = saturated non-Lebesgue measurable. Let (R. G, P) be the
1 )probability space provided by Theorem I for these sets

where the measure p in Theorem I is taken to be standard
Gaussian measure on B(R). All random variables in this

The following corollary is an immediate result of example will be defined on the probability space
Theorem 1. (R, (, P). Let X((o) =Io (t) -Si(o). Note that X is a

Corollary I: Let Theorem 1 set notation. The Bernoulli random variable, and P(X = -1) = 1 - I and
O-algebra G includes B(R) and contains S1. .. SN. N

Further, the probability measure P agrees with g on B(R) P(X = 1) 1. For some p0 e G. let Y (wo) = a" where o
and, for the probability space A G, P), B(R) is isa N PO

independent of c(S 1 .  SN). is a positive real number, and for all other p's in G, let Yp
= 0. Note that (Yp: p e G) is a Gaussian random field.

Further, we recall the following result from [2], Further, note that atYp: p e G) = B(R) and o(X)
which calls into question the validity of many claims in .meansqure etimtio thery.{(n, 0, S1. Sc 1. Recalling Corollary 1. we see that X is
mean square estimation theory. I

Theorem 2: For any real number B. there exists a independent of the data IY : pe G), Thus, we see that

probability space (A. F -P), two bounded random =-N a.s. for all n e G. Further, we see that P(Mn = X) =N
variables X and Y defimed on (fi, F, P), and a function 0 for all n C C. However. if one knew PO. one could

f:R--i-R such that E((Y -IEY I X) 2]> B and yet f(X) = Y reconstruct X precisely from via X = g(Y ) point.
pointwise on •

wise on R, where g'R.RR via g(x) = II•-o s(-•

Now. we present an observation which will be of 1) s
use to us. Note that X can be precisely written as a function of an

independent random variable. Further, note that this can
Lemma 1: Let the introduction set notation. If be done regardless of how small or large the positive
n, 5 n2 < ... is any nondecreasing infinite sequence of variance of YPO is. and P(X = 1) can be arbitrarily small

elements from G, then the sequence of random variables by choice of N. Of course, knowledge of Po is crucial,
{Ef•Xl!Yni:i i- ,2 ... j]: j N) is asecond order

S:1 :EXAMPLE B: In this example, we let the random
martingale with respect to the filtation f F hi: i E N}. variable X be Gaussian, and we get a result similar to that

in Example A. For an integer N > 1, let the probability
Proof: First, it follows from Jensen's inequality for space be the same as in Example A, and let
conditional expectations that X(o)) = WTS - ISj]. For any real Borel set B, note that
(ERX l Yn: i = 1, 2...., j: j r NJ is a sequence of second I C B)= P((5 1 r B) (S• r (-B))) =j±(B). where jl as

order random variables. Also, it follows from the in Example A is standard Gaussian measure on B(R).
definition of conditional expectation that Thus, we see that X is a standard Gaussian random
E I Yn: i = 1. 2.- A is Fnmeasurable. Finally, variable. Let the random field (Yp: p e G) be as in

note that for positive integers JI <J2' it follows from Example A. Note that E[XIY = E[cs1 -I I 2R)]

standard properties of conditional expectation that
E[E[X I Yp:i=:= 1,2_.. ill], Fnj ] = to E[I -IS I IB(R)] = ([2-N a.s., since the identity

X lYn.i = 1, 2...Jll a.s. Q.E.D. map is Borel measurable, since S1 is independent of



BR), and since P(S )=.In this case, we ee that for immediately that this martingale is equal to a fixed
N random variable for all j greater than iome positive

0)[2-N]i when N =2 M =0 as. integer J. Further, note that the martingale does not
P L J .s. Thus, converge to X. Thus, for no value of i 1. 2,. ..... L
for all p e G. On the other hand, for large N. Mn is close will this i-martingale converge to X. However, for

--wforp05n. and P(X =-w)= 1 -I. Nevertheless. we positive integers j, if we let q 1 -jd, die martingale

N (E[X I Yql ..... Yqj )- j - N) is an ordinary martingale
have that P(Mn = X) = 0 for any n E G. However, we can (see Lemma 1), and it follows from elementary marungale
once again write X precisely as a function of Y P. That is. theory that this martingale converges in Lp(f0, F. P), for

let U:-4R via h(x) g(x) where g is as in Example any p C (1, -. ), and L.s. as rn-+- to X; indeed, here it will

A, and note that X = h(Y p) pointwise on R. converge pointwise.

EXAMPLE E: For an integer N > 1, let the probability
EXAMPLE C: For an integer N > 1, let the probability space be the same as in Example A. Let X(w) =
space be the same as in Example A. Let X(a0) = 1W c Isc]. As in Example B, note that X is a standard

m)[NIS (a))- N-- c Is(w)]. Notice that E[X] =0. Also, I 1

n 1 N- I Gaussian random variable. Now, for each n r G. let
notice that if N =2, X is a Gaussian random variable. Let denote the sun of the components of n. and let Yn(CO)
the random field (Yp: p e G) be defined via Yp(co) = Sp Nnr

for each p 6 G, where [sp: pe )G is a set of nonzero real ) Sn. Notice that (Yp- p e G) is a Gaussian random

numbers. Notice that in this case, (Yp: p r G) is a field, and phas zero mean and P of (sp Now.

Gaussian random field, and each random variable in this for any p e G, as in Example B. M()= a• -(a .s. If
random field has zero mean and a positive variance. Now, FN
what if we tried to estimate X from elements of the random N = 2. we see that Mp = 0 a.s. for all p e G. In any case.

field {Yp: p e G)? Notice that a(Yp: p e G) = B(R). Mp = E[XI q s p] must be a Bore] measurable function of

Further. notice that E[X I B(R)] = "c since a(Yq: q!5 p) = P(R), and X is not a Borel

E[cc[N IS (0)) - -- I ISC (cO)] I B(R)] = 0 a.s.. since the measurable function of c0. Thus, once again, conditional
identity map is B(R)-measurable, since S1 is independent expectation is of no help to us here. However, for any

p C G. we can write X precisely as a function of Yp; that
of B(R). and since E[X] =0. Thus, for any ne G. MnO= 0 Y X

a.s. However, notice that for any p e G. X can be written is. X = - 4!E poinrwise on R, where g is the function

precisely as a function of Y That is. X(wo) = rp(Y (0))) iven 5p aSpl
p. ppgve in Example A.

where rp:R--+R via

rp(x)=(N.)[NS 5 (-I.)- N Sis " space be the same as in Example A. Let X(ta) = ca, and
note that X is a standard Gaussian random variable. For

EXAMPLE D: In this example, assume k > I. and let the some N distinct points p .p2 . ... PN in G, let Y pi() (

probability space (C), F, P) be given by R, B(R), and

standard Gaussian measure on B(R). Let X(ca) = co. Let d be oc Isi(cc), and for all other points p p G, let Y - Note

the element of G given by d = (E, £ ..... c ). Now, let

Yd= (a •, 1](o), and for integers j >1, let Y(jd) = that X(Oc) = Ypi(o3), pointwise -n R. Further, for

w I(j-l' j](C). For n in G but not equal to positive i 1

integral multiples of d, let Yn = 0. Now how might we certain points n e G, Mn(o3) = X(o)) pointwise on k and

estimate X? Fix any point no in G, and for positive the cardinality of such points n is I 0 . Note that if k > 1,

integers i 5 k and positive integers j, let pj be the point depending on the location of the N points

whose coordinates are the same as those of no except that Pl 1 p2 ..... PN in G. there could exist a subset H of G

the i-th coordinate is the i-th coordinate of no plus jE. having cardinality go such that Mn = 0 for all n C H.

Then (E[X I YP1 .... YPi ]:j e N) is an ordinary EXAMPLE G: For an integer N > 1, let the probability

martingale (see Lemma I); indeed, in the context of space be the same as in Example A. Let X(to) = (o. and note
random fields, it is called an i-martingale. It follows that X is a standard Gaussian random variable. For some N



points p 1. p2 . pN in G, let Ypi(wo) =D lsi(w) + 1,

Note that X(0)= Ypi(wa) -N= Ypi(O) =( CONCLUSION

We have developed a so of examples pointing out
pointwise on R. Further, for certain points n e G. some caveats in the use of multiparaneter martingales in
Mn(c) = X(co) pointwise on X. and estimation theory. In particular, we noted some instances

in which estimators existed which yielded superior
ca({n r G: Mn(c) = X(w) for all to e R}))= K. 1performance than estimators based on conditional

expectation. We hope these results will be of use to those

EXAMPLE H: Let k be greater than one, and let concerned with such endeavors.

(Al, •. P) be a probability space on which can be defined ACKNOWLEDGEMENT
a random field (Zp: p 6 G ) of identically distributed, This research was partially supported by the Office
mutually independent random variables each having a Nava research une Gant suporedby heOfic
probability density function given by of Naval Research wider Grant N00014-90-J-1712.
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Xn=X+÷L Zp. and that the Z 's have zero
m nl e

(pe G: p~n)

mean. Might we guess that Xn should then converge to X,
in some meaningful sense? If so, we would be well advised
to guess again, since it follows from 13) (see also
(4, pp. 369-3701 for the k=2 case) that

lira sup -- - = - a.s.
peG Ini I "Gp"I I{PeG: p_<n)I

EXAMPLE I: Consider the situation depicted in
Example H. Recall that G is a countable set, and let

Iin: n e N) be an enumeration of G. Now, recalling

Kolmogorov's strong law of large numbers, note that
k

I yti converges to almost surely to X as k..o.
k i= 1


